Angiotensin-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide.
نویسندگان
چکیده
The paraventricular nucleus (PVN) of the hypothalamus is known to be an important site of integration in the central nervous system for sympathetic outflow. ANG II and nitric oxide (NO) play an important role in regulation of sympathetic nerve activity. The purpose of the present study was to examine how the interaction between NO and ANG II within the PVN affects sympathetic outflow in rats. Renal sympathetic nerve discharge (RSND), arterial blood pressure (AP), and heart rate (HR) were measured in response to administration of ANG II and N(G)-monomethyl-l-arginine (L-NMMA) into the PVN. Microinjection of ANG II (0.05, 0.5, and 1.0 nmol) into the PVN increased RSND, AP, and HR in a dose-dependent manner, resulting in increases of 53 +/- 9%, 19 +/- 3 mmHg, and 32 +/- 12 beats/min from baseline, respectively, at the highest dose. These responses were significantly enhanced by prior microinjection of L-NMMA and were blocked by losartan, an ANG II type 1 receptor antagonist. Similarly, administration of antisense to neuronal NO synthase within the PVN also potentiated the ANG II responses. Conversely, overexpression of neuronal NOS within the PVN with adenoviral gene transfer significantly attenuated ANG II responses. Push-pull administration of ANG II (1 nmol) into the PVN induced an increase in NO release. Our data indicate that ANG II type 1 receptors within the PVN mediate an excitatory effect on RSND, AP, and HR. NO in the PVN, which can be induced by ANG II stimulation, in turn inhibits the ANG II-mediated increase in sympathetic nerve activity. This negative-feedback mechanism within the PVN may play an important role in maintaining the overall balance and tone of sympathetic outflow.
منابع مشابه
NMDA-mediated increase in renal sympathetic nerve discharge within the PVN: role of nitric oxide.
The paraventricular nucleus (PVN) of the hypothalamus is an important site of integration in the central nervous system for sympathetic outflow. Both glutamate and nitric oxide (NO) play an important role in the regulation of sympathetic nerve activity. The purpose of the present study was to examine the interaction of NO and glutamate within the PVN in the regulation of renal sympathetic nerve...
متن کاملاثر آنژیوتانسین II در هسته پاراونتریکولار در تشدیدآسیب ایسکمی- پرفیوژن مجدد کلیه
Background: The renal sympathetic nerve activity (RSNA) is enhanced in renal failure. Paraventricular nucleus in hypothalamus is an important central site to regulate sympathetic activity. There are angiotensin II (Ang) II receptors in this nucleus. The aim of this study was to evaluate the effects of angiotensin II in hypothalamic paraventricular nucleus (PVN) on renal ischemia-reperfusion inj...
متن کاملEffect of nitric oxide within the paraventricular nucleus on renal sympathetic nerve discharge: role of GABA.
Both nitric oxide (NO) and GABA are known to provide inhibitory inputs to the paraventricular nucleus (PVN) of the hypothalamus and are involved in the control of sympathetic outflow. The purpose of the present study was to examine the interaction of NO and GABA in the regulation of renal sympathetic nerve activity in rats. The responses of renal nerve activity, blood pressure, and heart rate t...
متن کاملBlunted nitric oxide-mediated inhibition of renal nerve discharge within PVN of rats with heart failure.
We have demonstrated a decreased neuronal nitric oxide (NO) synthase (nNOS) message in the hypothalamus of rats with heart failure (HF). Subsequently, we have demonstrated that NADPH diaphorase (a commonly used marker for nNOS activity) positive neurons are decreased in paraventricular nucleus (PVN) of rats with coronary artery ligation model of HF. The goal of the present study was to examine ...
متن کاملAngiotensin-converting enzyme 2 overexpression improves central nitric oxide-mediated sympathetic outflow in chronic heart failure.
Angiotensin (ANG)-converting enzyme (ACE)2 in brain regions such as the paraventricular nucleus (PVN) controlling cardiovascular function may be involved in the regulation of sympathetic outflow in chronic heart failure (CHF). The purpose of this study was to determine if ACE2 plays a role in the central regulation of sympathetic outflow by regulating neuronal nitric oxide (NO) synthase (nNOS) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 290 4 شماره
صفحات -
تاریخ انتشار 2006